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1. Introduction

This contains the beginnings of an existence theory for viscosity type solu-
tions for prescribed mean curvature to boundaries of domains on Riemann-
ian manifolds. These solutions can have geometric singularities of types that
occur naturally in geometric (for example variational) problems. There is
an outline, close to a complete proof, of a basic existence theorem, and just
a hint of of what should happen with regularity.

2. The k-Mean Curvature in the Viscosity Sense.

2.1. The k-mean curvature for C2 boundaries. Let M be a complete
n dimensional Riemannian manifold. For any domain D in M with C2

boundary ∂D let n be the outward pointing unit normal to ∂D. Letting ∇
be the connection (or covariant derivation) of the metric on M we define
the second fundamental form II of ∂D by

II(X, Y ) := 〈∇XY,n〉
1
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where X, Y are C1 vector fields tangent to ∂D. As usual this is a symmetric
(0, 2) tensor. The Weingarten map, or shape operator , A of ∂D is the
field of linear maps on T (∂D) given by

AX := −∇Xn.

This is related to II by
II(X, Y ) = 〈AX, Y 〉.

The mean curvature H of ∂D is then

H :=
1

n − 1
trace A.

In terms of II this is given by

H =
1

n − 1

n−1∑

i=1

II(ei, ei)

where e1, . . . , en−1 is a locally defined orthonormal moving frame on ∂D. If
Bn(r) is the open ball of radius r in M = Rn then with the conventions
here H = −1/r. (The negative is because we are using the outward normal
and ∂Bn(r) curves toward the interior of Bn(r).)

Let U(M) be the sphere bundle of unit vectors tangent to M .

2.1. Definition. Let k : U(M) → R be a C1 function. Then for any domain
D ⊂ M with C2 boundary the k-mean curvature of ∂D is the function
on ∂D given by

θ∂D(p) := H(p) + k(n(p))

where H is the mean curvature of ∂D. (If the domain ∂D is clear from
context then this will be written as simply θ.) �

It is also useful to have a notation for the k-mean curvature computed
with respect to the inward normal rather than the outward normal. The
mean curvature H changes sign when n is replaced by −n. So the k-mean
curvature with respect to the inward normal is

θ∂D
− (p) = −H(p) + k(−n(p)).

Again when the domain is clear from context this will be written as sim-
ply θ−.

2.2. The definition of k-mean curvature in the viscosity sense. We
now wish to extend this definition to general domains in such a way that it
agrees with this classical definition on domains with C2 boundary, but still
allows for naturally occurring geometric singularities. The definition we
give a geometric version viscosity solutions (cf. [2, 1]). We will be replacing
functions by boundaries of open sets, and upper and lower support functions
by inner and outer support domains.
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2.2. Definition. Let D be an open set p ∈ D. Then U is an inner support
domain (respectively an outer support domain) iff U is an open set with
U ⊂ D (respectively U ∩D = ∅), the boundary ∂U is a C2 hypersurface in
a neighborhood of p, and p ∈ ∂U . �

We will sometimes say that U touches ∂D from the inside (respec-
tively touches ∂D from the outside).

2.3. Definition. Let D be an open set in M . Then we say that K ≤ 0 on
∂D in the viscosity sense (respectively K ≥ 0 on ∂D in the viscosity
sense) for any point p ∈ ∂D and any inner support (respectively outer)
domain U to ∂D at p the inequality θ∂D(p) ≤ 0 (respectively θ∂D− (p) ≥ 0)
holds. If both θ∂D ≥ 0 and θ∂D ≤ 0 in the viscosity sense, then θ∂D = 0 in
the viscosity sense .

In the definition of θ ≥ 0 in the viscosity sense we use θ∂D− (p) ≥ 0, that
the k-mean curvature is computed with respect to the inward normal to the
outer support function U . This is because when ∂D is smooth the inward
normal to an outer support function is the outward normal to ∂D at a point
of contact.

There may be many points p ∈ ∂D that have no inner support domains at
p. For example if D in the interior of a triangle in the plane then there are
no inner support domains at any of the vertices of the triangle. Therefore
θ ≤ 0 in the viscosity sense is weak notion of the inequality K ≤ 0 as in only
gives direct information at points where there is an inner support domain.

This can be put picturesquely as follows. A domain D fails to have θ ≤ 0
in the viscosity sense if and only if a blindfolded mathematician with C2

fingertips can “feel” it does not have θ ≤ 0 by finding a point where he/she
can tell θ > 0 by touch. At points not accessible to C2 fingertips the
mathematician will not be able get any information. Likewise a domain
D fails have θ ≥ 0 in the viscosity sense if and only if our blindfolded
mathematician can feel that θ < 0 at some point.

As a first example we have the elementary result whose proof is left to
the reader.

2.4. Proposition. Let D be a domain in M with C2 boundary. Then K ≤ 0
(respectively K ≥ 0 or K = 0) in the viscosity sense if and only if K ≤ 0
(respectively K ≥ 0 or K = 0) in the classical sense. �

As an example let D be the interior of convex polyhedron in Rn. Then
the standard mean curvature H satisfies H ≤ 0 on ∂D as on the (n −
1)-dimensional faces of ∂D we H = 0 in the classical sense. The lower
dimensional faces can not be touched from within D by C2 inner support
domains. This accounts for all the points of ∂D and so H ≤ 0 in the
viscosity sense. (More generally it is easily checked that any convex open
set has mean curvature with H ≤ 0 in the viscosity sense.)

A more interesting example is D = {(x, y) : xy > 0} (that is the union
of the first and third quadrants). Let θ = H so that θ is just the curvature



4 RALPH HOWARD AND JOSEPH H. G. FU

in the usual sense. Then θ = 0 on ∂D as at all points other than the origin
θ = 0 in the classical sense. At the origin there are no inner or out support
domains so θ = 0 holds on all of ∂D. This extends to higher dimensions.
Let D := {(x1, . . . , xn) ∈ Rn : x1x2 > 0}. Then ∂D has mean curvature
= 0 in the viscosity sense, even thought there is a singularity along the
codimension two subspace {x1 = x2 = 0} (codimension one in ∂D).

This notation is also related to variational solutions to least area type
problems.

2.5. Proposition. •2.1 Let M be a complete n-dimensional Riemannian
2.1: Look in Federer and

get the definitions right
(i.e. use currents and
the like). Also fill in
detail of proof and check
if stationary (as opposed
to minimizing) is
enough.

manifold and D ⊂ M an open set so that its boundary satisfies Hn−1(∂D) ≤
Hn−1(∂D′) for any other open with Vol(D′) = Vol(D). Then there is a
constant H0 so that H − H0 = 0 in the viscosity sense. (Here Hn−1 is the
(n − 1)-dimensional Hausdorff measure.)

Proof. If is a standard result ∂D will be a smooth hypersurface with constant
mean curvature H0 except for a singular set ∂Dsing which will have Hausdorff
codimension at least seven in ∂D. Let p ∈ ∂D and let U be an inner support
domain to ∂D at p. Then as ∂U is C2 in a neighborhood of p its tangent
cone at p will be the hyperplane T (∂U)p ⊂ T (M)p and the tangent cone to
∂D at p will be a cone over a minimal verity in the unit sphere of T (M)p. As
∂D is disjoint from U the tangent cone to ∂D will lie in one of the two closet
half planes of T (M)p determined by T (∂U). But a minimal cone contained
in a half space is a hyperplane. Thus the tangent cone to ∂D at p is T (U)p.
By the regularity theory this implies that p is a smooth point of ∂D, that
is p /∈ ∂Dsing. As H ≡ H0 on ∂D r ∂Dsing in the classical sense we are
done. �
2.3. Elementary properties. One use of mean curvature is to estimate
focal distances and this give upper bounds on distances. The following
shows that the viscosity version of mean curvature is good enough for this.

2.6. Proposition. Let M be a complete Riemannian manifold with Ric ≥ 0.
Let D ⊂ M be an open set with mean curvature H ≥ 1/r0 in the viscosity
sense. Then any point of M is at a distance ≤ r0 from D.

Proof. Toward a contradiction assume that there is a point q ∈ M with
dist(q, D) > r0. Let r1 = dist(q, D) and let p ∈ ∂D be a point with
dist(q, p) = r1. Let γ : [0, r1] → M be a unit speed geodesic with γ(0) = p ∈
∂D and γ(r1) = q. Let r2 be so that r0 < r2 < r1. The geodesic γ is min-
imizing and so γ(r2) has no cut point on the segment γ

∣∣
[0,r2]

which implies
that the open geodesic ball B(γ(r2), r2) is smooth near γ(0) = p. Also by
the triangle inequality B(γ(r2), r2) ⊆ B(γ(r1), r1) and B(γ(r1), r1)∩D = ∅

as r1 = dist(q, D). Therefore B(γ(r2), r2) is an outer support domain for ∂D
at p. By standard comparison results the mean curvature of ∂B(γ(r2), r2)
with respect to the inward normal satisfies 1/r2 ≥ H

∂B(γ(r2),r2)
inward . But the

definition of H∂D ≥ 1/r0 in the viscosity sense requires H
∂B(γ(r2),r2)
inward ≥ 1/r0.
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These inequalities implies 1/r2 ≥ r0 which is impossible as r0 < r2. This
contradiction completes the proof. �

Of more interest is the Lorentzian version of this.

2.7. Proposition. The Penrose singularity theorem holds with the trapped
region having its divergence defined in the viscosity sense rather then in the
classical sense.

Proof. Come back to this. It should be an easy variant on the usual proof,
which in turn is just a variation on the last result. �

3. Trapped Regions and The Main Existence Theorem

3.1. Constructing viscosity solutions to θ ≥ and θ ≤ 0. Our goal is
to construct domains D with θ∂D = 0 by a geometric variant of Perron’s
method for elliptic equations. Instead of taking a supremum of subsolutions,
we will take unions of domains with θ > 0. We give such domains a name
(the terminology comes from the trapped surfaces of general relativity).

3.1. Definition. A domain D ⊂ M is a trapped domain iff θ∂D > 0 on
all of ∂D and D is compact. (Note we do not assume that either D or ∂D
is connected.) �

The following is the analogue of the supremum of subsolution being sub-
solution.

3.2. Proposition. Let M be a complete Riemannian manifold and let {Dα :
α ∈ A} be a collection of trapped regions in M . Then the union D :=⋃

α∈A Dα has θ ≥ 0 in the viscosity sense. (But D need not have compact
closure.)

Proof. Toward a contradiction, assume that ∂D does not have θ ≥ 0 in the
viscosity sense. There there is a point p ∈ ∂D and a outer support region
V to ∂D at p so that ∂V is C2 in a neighborhood of p and θ∂V− (p) < −4ε

for some small ε > 0. Then by continuity we can assume that θ∂V < −3ε
in some neighborhood of p. Then it is possible to choose an open subset
W of V so that W is also an outer support region for ∂D at p, so that
∂W ∩ ∂V = {p}, and also θ∂W− < −2ε near p. (See Figure 1.) Let Wr be

∂V

∂W

∂D0

p
∂Wr0

q

Figure 1

the set of point on M that have Riemannian distance < r from W . As W
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only meets ∂V at p, for sufficiently small r all of Wr will be a subset of V
except near p (again see Figure 1). Also as W is C2 near p (this is part
of the definition of W being an outer support region to ∂D at p) and so
for sufficiently small r we have that near p the boundary ∂Wr is a parallel
hypersurface to ∂W and therefore also C2. So choose r1 so small that if
r < r1 all of ∂Wr which is not contained in V is C2 and has θ∂Wr < ε (this
is possible by continuity as ∂Wr → ∂W in the C2 topology as r ↘ 0). Now
as Wr1 is an open neighborhood of p by the definition of D there is a trapped
domain D0 ∈ {Dα : α ∈ A} so that Wr1 ∩ D0 6= ∅. Now let q be a point of
D0 that is a minimal distance from W and let r0 be the distance of q from W
(which is the same as the distance from D0 to W ). Then ∂D0 and ∂Wr0 are
tangent at q. But this contradicts the strong maximal principle as θ > 0 on
∂D0 and θ− < −ε < 0 at q on ∂Wr0 (recall that we are computing θ− with
respect to the inward normal at on ∂Wr0). This completes the proof. �

We need a method of constructing large trapped regions in M from smaller
ones. The following, which is implicit in the paper [4] of Kriele-Hayward,
does this.

3.3. Proposition (Kriele-Hayward [4]). Let D1, . . . , DN ⊂ M be a finite
number of open sets with C2 boundaries. Assume that θ∂Dk > 0 on ∂Dk r⋃

j 6=k Dj. Then there is a region D with C2 boundary, θ∂D > 0 and with
D ⊃ D1 ∪ · · · ∪ DN .

3.4. Remark. As the proof will make clear it is not necessary to assume that
all of ∂Dk is C2, but only that ∂Dk r

⋃
j 6=k Dj is contained in a part of the

boundary that is C2. The result will be applied in this more general form
below. �

Proof. By use of induction it is enough to assume that N = 2 and that
θ∂D1 > 0 on ∂D1 r D2 and θ∂D2 > 0 on ∂D2 r D1.

We would like to assume that ∂D1 and ∂D2 intersect transversally. If
they do not than as the condition θ > 0 is open in the C2 topology and
the space of embeddings of ∂D2 which are transverse to ∂D1 is open and
dense in the space of embeddings into M , we can replace D2 be a slightly
larger domain D∗

2 with so that θ > 0 on ∂D∗
2 r D1 and so that ∂D1 and

∂D∗
2 meet transversely. Renaming D∗

2 as D2 we can assume that ∂D1 and
∂D2 meet transversely. (See Figure 2.) The idea is to span the corner
along ∂D1 ∩ ∂D2 be a smooth hypersurface as in Figure 3. Now that the
spanning hypersurface curves away from D1 ∪ D2 and therefore with some
care we can arrange for θ > 0 on this strip.•3.1 (See the proof of [4, Lemma 6

3.1: It would be worth
while to find a short
proof other than the one
in [4]. Besides I am not
sure I trust them to get
it right.

p. 1599].) �

Taking infinite unions does not lead to quit such a clean result.

3.5. Proposition. Let M be a complete Riemannian manifold and {Dα :
α ∈ A} be a collection of trapped regions in M . Then either the union
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Figure 2. A part of ∂(D1 ∪ D2) near a part of ∂D1 ∩ ∂D2. The
domain D1 ∪ D2 is below the pictured surface.

Figure 3. Smoothing the corner of ∂(D1 ∪ D2) along ∂D1 ∩ ∂D2.

D :=
⋃

α∈A Dα has θ ≤ 0 in the viscosity sense, or there is a trapped region
D∗ that contains a point not in D.

Proof. If ∂D does not have θ∂D ≤ 0 in the viscosity sense then there is a
point p ∈ ∂D and an inner support domain V to ∂D at p so that θ∂V (p) > 4ε
for some small positive number p. By continuity we can assume that θ > 3ε
on some neighborhood of p in ∂V . Then there is an open subset W of V so
that W is also an outer support region for ∂D at p, so that ∂W ∩∂V = {p},
and also θ > 2e near p. As in the proof of Lemma 3.2 if Wr is the set
of points of M with distance < r from W for r sufficiently small ∂Wr will
be a C2 hypersurface near p and by taking r still smaller we can assume
that θ > ε on all of ∂Wr r V . (See Figure 4) Without loss of generality

∂V

∂W

∂Wr

p

Figure 4

we can assume that W , and therefore Wr, has compact closure. (If not
interest W with a large geodesic ball centered at p.) Let ιρV := {q ∈ V :
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dist(q, ∂V ) > ρ}. By choosing ρ small enough we can assume that ∂Wr r ιρ
is a C2 hypersurface with θ > 0. As Wr has compact closure the same is
true of Wr ∩ ιρV . Each point of Wr ∩ ιρV is contained in some trapped
domain and trapped domains are open so there is a finite set of trapped
domains D1, . . . , DN ⊆ {Dα : α ∈ A} so that Wr ∩ ιρV ⊂ D1 ∪ · · · ∪ DN .
Proposition 3.3 implies there is a trapped domain D̃ with Wr ∩ ιρV ⊂ D̃.
But then ∂Wr r D̃ ⊆ ∂Wr r ιρ and so Wr r D̃ is a C2 hypersurface with
θ > 0. Therefore we can apply Proposition 3.3 again and conclude D̃ ∪ Wr

is contained is some trapped domain D∗. But then D∗ contains p /∈ D. This
completes the proof. �

3.2. The extremal trapped region. We now wish to construct a domain
θ = 0 in the viscosity sense and which also is largest. The maximality
property of this solution should force it to have better regularity properties
than most solutions.

3.6. Definition. The extremal trapped region of M is D = Dθ given by

D :=
⋃

{D ⊂ M : D is a trapped region of M}.
That is D is the set of points of M are in the interior of at least one trapped
domain. �

3.7. Theorem (Main Existence Theorem). The extremal trapped region sat-
isfies θ∂D = 0 in the viscosity sense.

Proof. That θ∂D ≥ 0 in the viscosity sense follows from Proposition 3.2. If
we do not have θ∂D ≤ 0 in the viscosity sense then by Proposition 3.5 there
is a trapped domain D∗ that contains a point not in D. But the definition
of D implies that D∗ ⊆ D and so this is impossible. Therefore θ∂D ≤ 0 in
the viscosity sense. This completes the proof. �

We now give conditions that imply the extremal trapped region is bounded
(that is it has compact closure).

3.8. Definition. The Riemannian manifold M has a barrier for θ iff there
is an open set U of M and a C2 function f : U → R so that

(1) There is a constant C0 so that f = C0 on ∂U and f > C0 on U ,
(2) f has no critical points in U , and
(3) the sets f−1

[
(−∞, r)

]
have θ ≤ 0 on their boundaries for r > C0. �

3.9. Proposition. Let M have a barrier for θ, then every trapped region D
is a subset of M r U . Therefore if M r U is compact then D has compact
closure.

Proof. Let D be a trapped region and assume that D ∩ U 6= ∅. As D
is compact there is a point p ∈ D where f

∣∣
D

has its maximum. As f
has no critical points the point p is on the boundary ∂D. Setting r =
f(p) = maxx∈D f(x) we then have D ⊆ f−1

[
(−∞, r)

]
and ∂D is tangent to
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∂f−1
[
(−∞, r)

]
at p. But this contradicts the strong maximum principle as

θ > 0 on ∂D (so that it is curved outward) and θ ≤ 0 on ∂f−1
[
(−∞, r)

]
(so

that it is curved inward). This completes the proof. �
As an example on M = Rn note that the unit sphere bundle U(Rn) =

Rn×Sn−1 in a natural way. Let k : Rn×Sn−1 → R be a C1 function so that
for some r0 we have k(p, u) ≤ 1/‖p‖ for all u and all p with ‖p‖ ≥ r0. Then
set U = Rn

r B
n(r0) and let f(x) = ‖x‖. Then the sets f−1

[
(−∞, r)

]
are

balls of radius r and so the mean curvature of boundaries these is H = −1/r.
Thus the k-mean curvature satisfies θ = H + k ≤ −1/r + k ≤ 0. So f is a
barrier for θ. Thus the extremal trapped region, D, is a subset of Bn.

4. Basics about Regularity

The following summarizes the regularity results that I hope can be gotten
cheaply from known regularity results for viscosity solutions [1]. We first
isolate the property of boundary point that lets use use this this theory.

4.1. Definition. Let M be a smooth manifold and U and open set. Then
∂U is a local graph (respectively local Lipschitz graph near p iff there
is an open set N containing p which are the domain of smooth coordinates
x1, . . . , xn so that in these coordinates

∂U ∩ N = {xn = f(x1, . . . , xn−1)}
for some continuous (respectively Lipschitz) function f . �
4.2. Remark. There are domains, D, whose boundaries, ∂D, are imbed-
ded topological hypersurfaces but are not local graphs with respect to any
smooth coordinates. The basic example is the domain D bounded by the

Koch snowflake curve. Note however in this example that ∂D is an embed-
ded topological circle and so by the Schönflies Theorem there is a homeo-
morphism h of R2 so that h[D] = B2 = {(x, y) : x2 + y2 < 1}. Therefore
∂D is a local graph with respect to some continuous coordinates. �

Here are two tries at a regularity theorem.

4.3. Theorem. Let D be an open set in the manifold M so that θ∂D = 0 in
the viscosity sense. Assume that ∂D is a local Lipschitz graph near p ∈ ∂D.
Then near p the boundary, ∂D, is a smooth hypersurface satisfying θ∂D = 0
in the classical sense.
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Proof. From the definition of local Lipschitz graph we can assume that we
have coordinates x1, . . . , xn so that ∂D is given by xn = f(x1, . . . , xn−1).
If we write the mean k-mean curvature on functions xn = ϕ(x1, . . . , xn−1)
as an operator, M, then it will be a quasi-linear elliptic operator and when
restricted to functions that satisfy an common Lipschitz condition it will be
uniformly elliptic. It is not hard to check that θ∂D = 0 in the geometric
viscosity sense used here implies that M(f) = 0 in the analytic viscosity
sense used in [1]. Therefore the regularity theory of [1] implies that f is
smooth and then M(f) = 0 in the classical sense. Therefore near p we see
that ∂D is a smooth hypersurface satisfying θ∂D = 0 as required. (This is an
oversimplification, as the operator M may not satisfy all the monotonicity
requirements used in [1], but I still think the basic method may work.) �

Here is an idea based on known existence theory and some form of the
maximum principle and which does away with the Lipschitz requirement.

4.4. Theorem. Let D be an open set in the manifold M so that θ∂D = 0
in the viscosity sense. Assume that ∂D is a local graph near p ∈ ∂D. Then
near p the boundary, ∂D, is a smooth hypersurface satisfying θ∂D = 0 in the
classical sense.

Proof. Again near p choose coordinates x1, . . . , xn so that ∂D is given by
xn = f(x1, . . . , xn−1) near p. We assume that the domain of these coordi-
nates is Bn−1 × (−1, 1), so that f : Bn−1 → (−1, 1). And we let M be as in
the last proof. For any x0 ∈ Bn−1 let U ⊂ Bn−1 containing x0 and so that
the boundary value problem M[u] = 0, u

∣∣
∂U

= ϕ has a unique solution for
any continuous ϕ : ∂D → R. Such domains should exist from the theory of
quasi-linear equations of mean curvature type [3]. Therefore we can find a
solution u so the problem M[u] = 0 and u

∣∣
∂U

= f
∣∣
∂U

. Then by uniqueness
we should have u = f in U and as u is smooth this implies that f is smooth
near x0. Of course the gap here is that we really only know uniqueness in
the class of classical solutions. So we need to generalize uniqueness to the
viscosity solutions to quasi-linear operators. What may make this hard is
that without a Lipschitz bound, the operator M is not uniformly elliptic.
So this may be harder than I am making it sound.

However in the case that n = 2, so that the operator M is an ordinary
differential operator, this should not be hard to push through. �

Based on this and the few example we have so far I will go out on a limb
and make:

4.5. Conjecture. Let D ⊂ M be a domain with θ∂D = 0 in the viscosity
sense. Then there is a closed set ∂Dsing of Hausdorff codimension two in M

so that ∂D r ∂Dsing is a smooth hypersurface with θ∂D = 0 in the classical
sense. �
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In this it might be necessary (and natural) to assume that D is regular
in the sense of point set topology. That is D

◦ = D. (That is the interior of
the closure of D is D.)
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5. Things To Think About

Joe,

Here are some directions we might go with this. While I am sure that
some of this will look silly latter, I wanted to make a list of problems during
my initial enthusiasm as it is going to be moved to a back burner for a while.

Best regards,
Ralph

5.1. Properties of domains with θ > 0 in the viscosity sense. Propo-
sition 2.6 shows that an open set with θ > 0 (or θ ≥ 0 or θ = 0 . . .) in
the viscosity sense has some of the same geometric properties as a domain
with smooth boundary and θ > 0 (or θ ≥ 0 or θ = 0 . . .) in the classical
sense. Work out what what other properties of θ > 0 (or θ ≥ 0 or θ = 0
. . .) in the viscosity sense domains. This is probably not of much interest to
Riemannian geometers, but might be well received by Lorentzian geometers
and general relativists as they are already working with extremal trapped
domains and we have a rigorous existence that such domains have θ = 0 in
the viscosity sense.

Upside: Should be moderately straightforward and should have an au-
dience. Good way to start to get a feel for viscosity sub and super solutions.
Also I have yet to really go through the proofs of the various versions of the
Penrose singularity theorem and having to do so would be fun.

Downside: Maybe too easy to be taken seriously by the hard analysis
crowd. Also in our hearts we would know this is avoiding the real questions
like regularity.

5.2. Regularity in two dimensions. I am just about sure that I have a
proof that if D ⊂ R2 is connected and has −1 ≤ κ ≤ 0 on ∂D in the viscosity
sense, then D is convex with C1,1 boundary. (If D is simply connected then
I am about positive this is true.) So I now believe:

5.1. Conjecture. Let D ⊂ R2 be a connected open set with ∂D satisfying
−1 ≤ κ ≤ 1 in the viscosity sense. Then ∂D is a C1,1 curve.

This should be accessible and very likely even fun to work out. It is more
general than it looks for if g is any other Riemannian metric on R2 then
inside any set U ⊂ R2 with U compact there are constants A, B > 0, only
depending on U and g, so that for any C2 curve γ in U we have that the
curvature κ of γ with respect to the flat metric and the curvature κg with
respect to g are related by

|κ| ≤ A + B|κg|.
(This calculation should be checked.) So by looking at what happens in
the Euclidean metric determined by local coordinates the conjecture would
pretty much settle the general regularity question.
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Upside: Fun, acessible, has obvious interest.
Downside: Not much that I can see.

5.3. Regularity in dimensions ≥ 3. While this is the big question I don’t
have any real ideas about where to start. I have been meaning to run a
seminar out of Caffarelli and Cabrè’s book [1] for some time. This may
motivate me to get started. We should also look at your idea of showing
that for the extremal trapped region ∂D is rectifiable by getting a bound on
the areas ∂D of the trapped surfaces approximating ∂D.

5.4. Maximum Principle. Here is what I would like:

5.2. Conjecture. Let M be a complete Riemannian manifold and k : U(M) →
R a C1 function so that k(−u) = −k(u) for all u ∈ U(M). Let D1, D2 ⊂ M
be domains so that the k-mean curvatures satisfy θ∂Di ≥ 0 in the viscosity
sense for i = 1, 2. Assume that D1 ∩ D2 = ∅, but that there is a point
p ∈ ∂D1 ∩ ∂D2. Then the connected component C of p in ∂D1 is a smooth
embedded hypersurface in M which is also a connected component of ∂D1

and θ = 0 on C.

This is going to be hard (and maybe false). But no maximum principle
has ever gone unused and this one would be very easy to apply in geometric
problems. However getting at least a little bit of a handle on the regularity
theory is probably a prerequisite for making any progress here.
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1. L. A. Caffarelli and Cabrè, Fully nonlinear elliptic equations, American Mathematical
Society Colloquium Publications, vol. 43, American Mathematical Society, Providence,
Rhode Island, 1995.

2. M. G. Crandall, H. Ishii, and P.-L. Lions, Users guide to viscosity solutions of second
order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), no. 1, 1–67.

3. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second
order, second ed., Springer-Verlag, Berlin, 1983.

4. K. Marcus and S. A. Hayward, Outer trapped surfaces and their apparent horizon, J.
Math. Phys. 38 (1997), no. 3, 1593–1604.

Department of Mathematics University of South Carolina Columbia, S.C.

29208, USA

E-mail address: howard@math.sc.edu

Department of Mathematics University of Georgia Athens, GA 30602, USA

E-mail address: fu@math.uga.edu


